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1 Introduction 

Do permanent or retractable government subsidies such as direct payments per unit revenue or 

per quantity produced, or specified feed-in-tariffs, or a renewable energy certificate or freedom 

from taxation, encourage early investment in renewable energy facilities?  Does the size of the 

possible government subsidy reduce the price threshold that justifies investment significantly, 

when both unit prices and the units of production are stochastic, if the subsidy might be 

retracted? 

 

The issue of the effect of government subsidies or charges on investment timing, when output 

prices are stochastic, is the original consideration in the first real option model of Tourinho 

(1979).  Tourinho poses the dilemma that without a holding cost being imposed on the owner of 

an option to extract natural resources, the owner would never have a sufficient incentive to 

commit an irreversible investment to produce the resource.  Other incentives to encourage early 

investment are the imposition (or presence) of an escalating investment cost, or as in Adkins and 

Paxson (2013) the existence of a convenience (or similar) yield for future prices of the 

underlying resource. 

 

We use a Poisson (jump) process to model sudden provision of permanent or alternatively 

retractable subsidies.  Several authors have incorporated jump processes into real investment 
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theory.  Dixit and Pindyck (1994) discuss Poisson jump processes, and apply upward jumps to 

the expected capital gain from the possible implementation of an investment tax credit.   Brach 

and Paxson (2003) consider Merton-style jumps in accounting for gene discovery and drug 

development failures and successes.  

 

We consider that the instantaneous cash flow from a facility is the respective commodity price of 

the output times the quantity produced, and either there is no operating cost, or there is a fixed 

operating cost that can be incorporated into the investment cost.  There are no other options 

embedded in the facility such as expansion, contraction, suspension or abandonment. Further 

assumptions are that the lifetime of the facility is infinite, there are no taxes or competition, and 

facility construction is instantaneous. Moreover, the typical assumptions of real options theory 

apply, with drifts, interest rates, convenience yields, volatilities and correlation constant over 

time, ignoring the seasonality and unreliability of prices and quantities.  

 

We assume the primary government objective of subsidies is to reduce the private sector price 

threshold (keeping the quantity threshold constant) that justifies making an irreversible, 

instantaneous investment, instead of creating a high real option value for any allowable 

prospective facility or concession. Initially we ignore the possibility that such concessions might 

be purchased from (and thus benefit) the government.   

 

Here is a broad menu of possible arrangements, that is some characteristic subsidies for such 

facilities, first where the subsidy is proportional to price times quantity, which is solved by 

simply scaling P*Q (Model I);  then assuming there is a permanent subsidy proportional to the 
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quantity generated (Model II); then assuming there is a retractable subsidy proportional to the 

quantity generated (Model III); and  then assuming there is the possibility of a permanent 

subsidy proportional to Q (Model IV).  

 

Then we compare the price thresholds and real option values using comparable base parameter 

values, and illustrate the sensitivity of these models to changes in some important variables such 

as quantity volatility, the subsidy rate and the intensities of possible sudden permanent or 

retractable subsidies.   

2 Models 

2.1 Model I   Stochastic Price and Quantity 

We consider a perpetual opportunity to construct a renewable energy facility, such as a hydro-

electric plant or a wind farm or another renewable energy facility (biodiesel, ethanol), at a fixed 

investment cost K . This investment cost is treated as irreversible or irrecoverable once incurred. 

The value of this investment opportunity, denoted by 1F , depends on the amount of output sold 

per unit of time, denoted by Q , and the price per unit of output, denoted by P . Both of these 

variables are assumed to be stochastic and are assumed to follow  geometric Brownian motion 

processes (gBm): 

 d d dX XX X t X Z    (1) 

for  ,X P Q , where   denotes the instantaneous drift parameter,   the instantaneous 

volatility,  and dZ  the standard Wiener process. Potential correlation between the two variables 
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is represented by  . Assuming risk neutrality and applying Ito’s lemma, the partial differential 

equation (PDE) representing the value to invest for an inactive firm with an appropriate 

investment opportunity is: 

 
2 2 2

2 2 2 21 1 1 1 1
12 2

1 1
0.

2 2
P Q P Q P Q

F F F F F
P Q PQ P Q rF

P Q P Q P Q
     

    
     

     
 (2) 

where X  denote the risk-neutral drift rates and r  the risk-free rate, (=r-). Following 

McDonald and Siegel (1986) and Adkins and Paxson (2011), the solution to (2) is: 

 1 1

1 1F A P Q
 

 . (3) 

1  and 1  are the power parameters for this option value function. Since there is an incentive to 

invest when both P  and Q  are sufficiently high but a disincentive when either are sufficiently 

low, we would expect both power parameter values to be positive. Also, the parameters are 

linked through the characteristic root equation found by substituting (3) in (2): 

      2 21 1
1 1 1 1 1 1 1 1 1 12 2
, 1 1 0P Q P Q P QQ r                       . (4) 

After the investment, the plant generates revenue equaling (1+)* PQ , where  is the permanent 

subsidy proportional to the revenue sold (=0 indicates no possible subsidy).  So from (2), the 

valuation relationship for the operational state is: 

 
2 2 2

2 2 2 21 1 1 1 1
12 2

1 1
(1 ) 0

2 2
P Q P Q P Q

F F F F F
P Q PQ P Q PQ rF

P Q P Q P Q
      

    
       

     
, (5) 

After the investment (K), the solution to (5) is: 

 
(1 )

PQ

PQ

r








, 

where PQ P Q P Q       , see Paxson and Pinto (2005). The investment is made when the 

two variables attain their respective thresholds. If we denote the threshold levels for P  and Q  by 
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1P̂  and 
1Q̂ , respectively, and since value conservation requires the investment option value to be 

exactly balanced by the net value rendered by the investment, then the value matching 

relationship is specified by: 

 1 1 1 1
1 1

ˆˆ(1 )ˆˆ

PQ

PQ
AP Q K

r

  




 


. (6) 

Optimality is characterized by the two smooth pasting conditions associated with (6)  for P and 

Q  , respectively: 

 1 1 1 1
1 1 1

ˆˆ(1 )ˆˆ

PQ

PQ
AP Q

r

  








, (7) 

 1 1 1 1
1 1 1

ˆˆ(1 )ˆˆ

PQ

PQ
AP Q

r

  








. (8) 

From (7) and (8), our conjecture that the parameter values are positive is corroborated because of 

the non-negativity of the investment option value. Moreover, the parameters are equal, 1 1  . 

This establishes that for determining the optimal investment policy, the two factors can be 

simply represented by their product PQ , the revenue from generating output per unit of time. 

This substitution is originally proposed by Paxson and Pinto (2005), who apply the principle of 

similarity for reducing the dimension of (5) to one in order to obtain a closed-form solution. It 

follows that: 

 1 1 1

1

ˆˆ(1 )

1PQ

PQ
K

r

 

 




 
, (9) 

where 1  is determined from  1 1, 0Q    , (4). Also 
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1 1

1 1 1 1 1

1 1 1
1 1

ˆˆfor ,

(1 ) ˆˆfor .
PQ

A P Q PQ PQ

F PQ
K PQ PQ

r

 





 


 
  

 (10) 

with: 

 
1 11 1

1 1
1

1

ˆˆ(1 )

( )PQ

P Q
A

r

 

 

 





. 

2.2 Model II    

Stochastic Price and Quantity  with a Permanent Subsidy on Quantity 

We now modify the analysis to consider the impact on the investment decision of a permanent 

government subsidy, denoted by  , whose value is proportional to the amount of output Q sold 

per unit of time.   In the presence of the subsidy, the generating plant is effectively producing 

two distinct outputs: (i) the revenue per unit of time generated by the plant PQ , and (ii) the 

subsidy revenue received from the government or power customers Q . As before, the 

investment option value denoted by 2F  depends on the two factors P  and Q . The risk neutral 

valuation relationship for 2F  takes a similar form as (2), so the valuation function is given by (3) 

except for the change in subscript, that is 2 2

2 2F A P Q
 

 . Also, its characteristic root equation is 

 2 2, 0Q    , (4). 

 

After incurring the investment, the present value of the operating revenue for the plant is: 

 
PQ Q

PQ Q

r r



 


 
. 
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The operating revenue is the present value of the operating revenue plus the government subsidy. 

If the two threshold levels signaling optimal investment are denoted by 
2P̂  and 

2Q̂  for P  and Q , 

respectively, then the value matching relationship for this subsidized production model is: 

 2 2 2 2 2
2 2 2

ˆ ˆˆ
ˆˆ

PQ Q

P Q Q
A P Q K

r r

  

 
  

 
. (11) 

It is observable from (11) that the principle of similarity is no longer available, since the factors 

P  and Q  occurring in the relationship cannot be construed as a product PQ , even if 2 2  . 

The two smooth pasting conditions associated with (11) are: 

 2 2 2 2
2 2 2 2

ˆˆ
ˆˆ

PQ

P Q
A P Q

r

 





, (12) 

 2 2 2 2 2
2 2 2 2

ˆ ˆˆ
ˆˆ

PQ Q

P Q Q
A P Q

r r

  


 
 

 
. (13) 

These conditions, (12) and (13),  reveal that both 2  and 2  are positive, otherwise the option 

value at investment 2 2

2 2 2
ˆˆA P Q

   would be negative. We obtain reduced form value matching 

relationships by substituting (12) and (13) in (11), respectively: 

 2 2 2 2

2

ˆ ˆˆ

1PQ Q

P Q Q
K

r r

 

  

 
      

, (14) 

 2 2 2 2

2

ˆ ˆˆ

1PQ Q

P Q Q
K

r r

 

  
 

  
.   (15) 

In these reduced forms, the government subsidy effectively reduces the effective investment cost 

of the plant with the economic consequence that the optimal revenue threshold justifying the 

investment is lower than without it. 
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The thresholds for the output sold per unit of time Q  and the price per unit of output P  

economically justifying an optimal investment are specified by the two reduced form value 

matching relationships, (14) and (15), and (4) the characteristic root equation  2 2, 0Q    . In 

principle, the boundary relationship is obtainable by eliminating 2  and 2 from the three 

constituent equations, but as no purely analytical solution exists, we resort to obtaining the 

boundary numerically, solving sets of equations simultaneously. 

2.3 Model III    

Stochastic Price and Quantity with a Retractable Subsidy on Quantity  

Subsidies are normally offered by governments in order to induce entrepreneurs to accelerate the 

timing of their investment in facilities, when otherwise they would defer making their 

commitment. As soon as the subsidy has activated sufficient plant investment, the government 

may decide to withdraw the subsidy, often without any advance warning. We assume that once 

the subsidy is withdrawn, it will never again be provided. 

 

We denote the value of the investment option in the presence of a subsidy, but when there is a 

possibility of an immediate withdrawal, by 3F , and in the absence of a subsidy by 1F (when =0), 

as before. We assume that the subsidy withdrawal is well explained by a Poisson process with a 

constant intensity factor, denoted by  . The change in the option value conditional on the 

subsidy withdrawal occurring is    1 3, ,F P Q F P Q , so the expected change is given by: 

             1 3 1 3, , d 0 1 d , , dF P Q F P Q t t F P Q F P Q t       . 
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From (2), it follows that the risk-neutral valuation relationship for 3F  is: 

 

 

2 2 2
2 2 2 23 3 3

2 2

3 3
1 3

1 1

2 2

0.

P Q P Q

P Q

F F F
P Q PQ

P Q P Q

F F
P Q F r F

P Q

   

   

  
 

   

 
     

 

 (16) 

The solution to (16) adopts the form: 

 3 3 1 1

3 3 1F A P Q A P Q
   

  , (17) 

where the parameters 1  and 1  are specified by  1 1, 0Q    , (4), with 1 1  (with =0), 

while 3  and 3  are related through the characteristic root equation: 

 
     

 

2 21 1
3 3 3 3 3 3 3 3 32 2

3 3

, 1 1

0.

P Q P Q

P Q

Q

r

           

    

    

    
 (18) 

For any feasible values of P  and Q , the valuation function 3F  exceeds 1F  because the 

coefficient 3A  is positive. This implies that the option value to invest is always greater in the 

presence of a government subsidy that may be withdrawn unexpectedly than in its absence, 

which suggests that a subsidy, even one having an unexpected withdrawal, comparatively 

hastens the investment commitment. 

 

If the subsidy is present, then the present value of the plant is    PQ QPQ r Q r     , and 

if absent, then  PQPQ r  , so the net present value after the investment is: 

 
 1

PQ Q

QPQ

r r

 

 




 
. 

The thresholds signaling investment for a subsidy with unexpected withdrawal are denoted by 
3P̂   

and 
3Q̂  for P  and Q , respectively. The value matching condition becomes: 
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 

3 3 1 1 33 3
3 3 3 1 3 3

ˆˆˆ 1ˆ ˆˆ ˆ

PQ Q

QPQ
A P Q A P Q K

r r

     

 


   

 
. (19) 

The two associated smooth pasting conditions are, respectively: 

 3 3 1 1 3 3
3 3 3 3 1 1 3 3

ˆˆ
ˆ ˆˆ ˆ

PQ

PQ
A P Q A P Q

r

    


 


, (20) 

 
 

3 3 1 1 33 3
3 3 3 3 1 1 3 3

ˆˆˆ 1ˆ ˆˆ ˆ

PQ Q

QPQ
A P Q A P Q

r r

     
 

 


  

 
. (21) 

The parameter values 1A , 1  and 1  are known from the solution to Model I with =0. 

3 31 1 3 3
3 1 1 3 3 3 3 3

ˆˆ
ˆ ˆˆ ˆ( ) / ( )

PQ

PQ
A A P Q P Q

r

   


  


      

2.4 Model IV   Stochastic Joint Products with Sudden Provision of a                        

Permanent Subsidy on Quantities 

We now explore the financial consequences on the investment decision for a subsidy that can be 

provided permanently at any time, in order to determine its effects on the threshold levels for P  

and Q .  We consider now only the case where the subsidy thereafter can never be withdrawn, 

and compare the case of building the facility without a possible subsidy with the cases of a 

permanent subsidy.   

 

Since a sudden unexpected subsidy withdrawal makes an operating plant appear to be less 

economically attractive, it is likely that investment is hastened to capture the subsidy before it is 

withdrawn. In contrast, a sudden unexpected permanent subsidy introduction is expected to 
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produce the opposite effect of investment deferral so that the subsidy income can be more fully 

captured. 

 

In Model II, the revenue threshold that signals an economically justified investment in the 

presence of a subsidy is 
2 2 2

ˆˆ ˆR P Q . Before the investment is made, the threshold 
2R̂  creates 

either side separate domains over which the investment option value differs in form.  The 

prevailing revenue is denoted by R PQ . If the prevailing revenue R  is less than the threshold 

2R̂ , then a sudden unexpected subsidy announcement does not trigger an immediate investment 

and the investment is deferred until R  attains 
2R̂ . If, on the other hand, 

2
ˆR R , then a sudden 

unexpected subsidy announcement automatically triggers an immediate investment in the plant. 

This asymmetry around the threshold 
2R̂  means that the investigation of a sudden unexpected 

subsidy announcement has to treat the case where 
2

ˆR R  differently from where 
2

ˆR R .  

 

The value for the investment option, denoted by 4F , is specified over the two domains: 

 
40 2

4

41 2

ˆfor ,

ˆfor .

F R R
F

F R R

 
 



 (22) 

Here we only consider the domain 
2

ˆR R , which is considered to be below threshold because 

over this domain, in the presence of a subsidy investment is not economically justified. It is 

assumed that a subsidy introduction is well described by a Poisson process with intensity  , and 

that once introduced, it cannot be withdrawn. The risk neutral valuation relationship then 

becomes: 



  

12 

 

 

 

2 2 2
2 2 2 240 40 40

2 2

40 40
2 40

1 1

2 2

0.

P Q P Q

P Q

F F F
P Q PQ

P Q P Q

F F
P Q F r F

P Q

   

   

  
 

   

 
     

 

 (23) 

The solution to (23) adopts the form: 

 40 40 2 2

40 40 2F A P Q A P Q
   

   (24) 

where the parameters 2  and 2  are specified by  2 2, 0Q    , (4), and 40  and 40  by 

 3 40 40, 0Q    , (18).  

 

If there is no subsidy, then the present value of the plant is given by  PQPQ r  , while if there 

is an additional subsidy, then the present value is    PQ QPQ r Q r     . The net operating 

present value after the investment is given by: 

 
PQ Q

PQ Q

r r



 


 
. 

The thresholds signaling investment for a sudden unexpected subsidy introduction are denoted 

by 
40P̂   and 

40Q̂  for P  and Q , respectively. The value matching condition becomes: 

 40 40 2 2 40 40 40
40 40 40 2 40 40

ˆ ˆˆ
ˆ ˆˆ ˆ

PQ Q

P Q Q
A P Q A P Q K

r r

    

 
   

 
. (25) 

The two associated smooth pasting conditions can be expressed as, respectively: 

 40 40 2 2 40 40
40 40 40 40 2 2 40 40

ˆˆ
ˆ ˆˆ ˆ ,

PQ

P Q
A P Q A P Q

r

    


 


 (26) 

 40 40 2 2 40 40 40
40 40 40 40 2 2 40 40

ˆ ˆˆ
ˆ ˆˆ ˆ .

PQ Q

P Q Q
A P Q A P Q

r r

    
 

 
  

 
 (27) 
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The effect of an unexpected sudden subsidy introduction is to raise the effective investment cost 

by an amount equaling the option value for an economically justified investment in the presence 

of a subsidy, adjusted by the Poisson intensity parameter  .  

3.  Numerical Illustrations 

It is interesting to compare the apparent effectiveness of different subsidy arrangements, and the 

possible sudden introduction or retraction of those subsidies on the real option value of those 

investment opportunities, and the price and quantity thresholds that justify commencing  

investments.  Pairs of P̂  and Q̂  could be generated by changing the solutions along a suitable Q 

range.  Since Model I P̂ with =.20 is less than Model I P̂  without a subsidy (=0), clearly a 

permanent subsidy makes a difference, with a 20% R subsidy reducing the price threshold by 

16.6%, and increasing the ROV almost 60%, as shown in Table I..   

   Table I 

 

Subsidy Incentive Effect under Different Models
 P^Q^ P^ (Q^=7.8) ROV

Model I 0.00 638.70 81.88 1022.72 NO SUBSIDY

Model I 0.20 532.25 68.24 1631.49 PERMANENT SUBSIDY ON R

 

Model II 13.65 486.07 62.32 1903.76 PERMANENT SUBSIDY ON Q

 

Model III 13.65 461.72 59.19 1717.11 RETRACTABLE SUBSIDY ON Q

 

Model IV0 13.65 718.97 92.18 1325.66 MAYBE PERMANENT SUBSIDY ON Q, R<R2^

Q^=Q 7.80

P 53.00

R 413.4

R Subsidy 106.45 Subsidy Value at R^ M I

Q Subsidy 106.47 Subsidy Value at P^Q^ M II
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Model I is the solution to EQs 6,-7-8 with ROV EQ 10, Model II is the solution to EQs 11-12-13 with ROV EQ 3 

amended, Model III is the solution to EQs 19-20-21 with ROV EQ 17, Model IV is the solution to EQs 25-26-27  

with ROV EQ 24,  all with also the Q function, either EQ 4 or 18, with the parameter values as follows: price 

P=€53, quantity Q=7.8 KWh, R subsidy =.20, Q subsidy 13.65,  investment cost K=€4,867,000
2
, price volatility 

P=.20, quantity volatility Q=.20,  price and quantity correlation =-.50, P=.01, Q=.01, and riskless interest rate 

r=.08. =.10  reflects the possibility of a subsidy being withdrawn, and both the possibility of a permanent subsidy 

and also a retractable subsidy.  P^Q^ indicates the total revenue, P^ indicates the  P threshold that justifies 

commencing the investment, given that Q^=7.8. 

For a comparable subsidy (at the price threshold) on the quantity generated, Model II, the 

permanent subsidy reduces the price threshold even more, and adds more than 16% to the ROV.  

R is more uncertain (34.6%) than Q due to the assumed volatilities and negative correlation.  

Permanent versus Retractable Subsidies 

The lowest price threshold given Q̂ =7.8 is indicated in bold red, retractable Model III.  At P =    

€ 53 the highest ROV indicated in bold is Model II, the permanent subsidy, which would not 

provide the greatest incentive to commence investment. Commence the project when the subsidy 

is available earlier if it might be withdrawn, a “flighty bird in hand”. 

A higher retractable  results in P̂  increasing slightly and ROV decreasing, as shown in Figure 5 

below.  Comparing the below threshold Model IV0 (maybe permanent) with the below threshold 

Model III (retractable), the PIV0 price threshold exceeds PIII, naturally because a bird in the hand 

is worth more than the same bird in a bush (talk is cheap), and the ROV is lower.  The most 

valuable ROV is  Model II, which is the permanent subsidy.  Governments seeking to sell 

concessions for the ROV might contemplate permanent subsidies, but charging immediately for 

the subsidies as a real option. 

SENSITIVITIES 

                                                 
2
 Some of the P, Q and K parameter values are consistent with an Iberian wind farm with a capacity of 3MW 

operating at average load factor of around 30%. The subsidy rate .20 for R in Model I is comparable with the 

Q=13.65 subsidy in Model II at the P,Q which justifies exercise of the real option. 
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Our base parameters for the sensitivity of P̂  and ROV to changes in parameter values are the 

same as for Table I, over a range of Q volatility 20% to 45%,  from .10 to .225 (and the 

comparables for Q), and  from .09 to .115, both for retractable, and for possible permanent 

subsidies.    Figure 1 

 

0P̂  is the solution to EQs 6-7-8 without a subsidy, and 
1P̂  with a subsidy, 

2P̂  is the solution to EQs 11-12-

13, 
3P̂

 
is the solution to EQs 19-20-21, 

4P̂  is the solution to EQs 25-26-27  with the parameter values in 

Table I.     

Price thresholds for the first four  models increase with increases with quantity volatility Figure 

1.   Figure 2 shows that naturally Model 0 is not affected by changes in the size of the subsidy, 

but otherwise except for Model IV, increasing the subsidy provides a positive incentive for early 

investment.  But for Model IV , increasing the size of a possible permanent subsidy may delay 

early investment. So either production volume floors (quotas) or  high actual permanent or 

retractable subsidies  might encourage early investment.    Sensitivity to the probability of  

subsidies is shown in Figure 3. Generally the higher the probability of a possible permanent 

subsidy results in an incentive to delay early investment.  
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Figure 2 

 

0P̂  is the solution to EQs 6-7-8 without a subsidy, and 
1P̂  with a subsidy, 

2P̂  is the solution to EQs 11-12-13, 
3P̂

 
is 

the solution to EQs 19-20-21, 
4P̂  is the solution to EQs 25-26-27  with the parameter values in Table I. 

Figure 3 
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3P̂
 
is the solution to EQs 19-20-21, 

4P̂  is the solution to EQs 25-26-27  with the parameter values in Table 

I.     

 

Figure 4 

 

ROV0 is the solution to EQ 10 without a subsidy, ROV1 with a subsidy, ROV2 the LHS of EQ 11, ROV3 

EQ 17, ROV4 EQ 24  with the parameter values in Table I.    
   Figure 5 

 

ROV0 is the solution to EQ 10 without a subsidy, ROV1 with a subsidy, ROV2  EQ 3 amended, ROV3 EQ 

17, ROV4 EQ 24  with the parameter values in Table I.      
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    Figure 6 

 

ROV3 is the solution to EQ 17, ROV4 EQ 24 with the parameter values in Table I. 

      

The ROV for nearly all models decrease with increases of quantity volatility (when there is 

negative correlation) . This is due to the negative correlation with P acting as a kind of natural 

hedge against Q, resulting in lower overall volatility.  So while either production volume floors 

or high subsidies of any type might encourage investment, the value of a renewable energy 

concession will be dependent on expected volatilities, as well as the subsidy.   

Sensitivity of ROV to possible retraction is intuitive.  The greater the probability of retracting a 

subsidy, the lower the ROV, Model III.  Of course, the greater the possibility of a permanent 

subsidy, Model IV,  the greater the ROV.  

In summary, a chief real options manager primarily interested in ROV before investment if P is 

below threshold, will seek permanent subsidies (Model II) or retractable subsidies (Model III), 

particularly if the concession is free, rather than purchased at the ROV from the government. A 

government seeking early investments, thus low price thresholds, will favor arrangements given 
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by Model III, unless full value for granting the concession can be realized. In that case, there is a 

trade-off between the present value of subsidies and the current value of the concession. 

What are the apparent policy guidelines in using subsidies to encourage early investment in 

facilities with joint (and sometimes distinct) products?  Subsidies matter, especially if regarded 

as permanent.  But whether increasing a subsidy say from .10 to .225 R (or equivalent) is worth 

reducing the threshold as indicated is questionable.  Possibly less transparent incentives are price 

or quantity guarantees, which effectively reduce price and/or quantity volatility, with a 

significant impact on thresholds under all models. 
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A B C

JOINT PRODUCTS MODEL I

INPUT Stochastic P & Q   

P 53.00

Q 7.80

R 413.40

K 4867.00

P 0.20

Q 0.20

 -0.50

r 0.08

P 0.01

Q 0.01

PQ 0.0000 B9*B7*B8+B11+B12

rPQ 0.0800

 0.2000 SUBSIDY ON R

OUTPUT

F1(P,Q) 1631.49 IF(B5<B28, B23*(B3^B24)*(B4^B25),B18)

F1(P,Q) 1334.00  (1+B15)*B5/B14-B6

VM 0.0000 B23*(B26^B24)*(B27^B25)-((1+B15)*(B26*B27)/B14)+B6

SP1 0.0000 B24*B23*(B26^(B24-1))*(B27^B25)-(1+B15)*B27/B14

SP2 0.0000 B25*B23*(B26^B24)*(B27^(B25-1))-B26/B14

Q 0.0000 0.5*(B7^2)*B24*(B24-1)+0.5*(B8^2)*B25*(B25-1)+B9*B7*B8*B24*B25+B24*B11+B25*B12-B10

A1 0.0003

1 2.56  

1 2.56  

P^ 68.24  

Q^ 7.80 SPECIFIED

P^ Q^ 532.25

SOLVER 0.0000 SET B29=0, CHANGING B23:B26
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A B C

JOINT PRODUCTS MODEL II

INPUT Stochastic P & Q   

P 53.00

Q 7.80

R 413.40

K 4867.00

P 0.20

Q 0.20

 -0.50

r 0.08

P 0.01

Q 0.01

PQ 0.0000

rPQ 0.0800

 13.6500 SUBSIDY ON Q

   

F2(P,Q) 1903.76 IF(B5<B28, B23*(B3^B24)*(B4^B25),B18)

F2(P,Q) 1821.50 B5/B14+(B15*B4)/(B10-B12)-B6

VM1 0.0000 (B26*B27)/B14+B15*B27/(B10-B12)-B6-B23*(B26^B24)*(B27^B25)

SP1 0.0000 (B26*B27)/B14-B24*B23*(B26^B24)*(B27^B25)

SP2 0.0000 (B26*B27)/B14+9B15*B27/(B10-B12))-B25*B23*(B26^B24)*(B27^B25)

Q 0.0000 0.5*(B7^2)*B24*(B24-1)+0.5*(B8^2)*B25*(B25-1)+B9*B7*B8*B24*B25+B24*B11+B25*B12-B10

A2 0.0009  

1 2.23  

1 2.78  

P^ 62.32  

Q^ 7.80

P^ Q^ 486.07

SOLVER 0.0000 SET B29=0, CHANGING B23:B26
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17

18
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37

A B C

JOINT PRODUCTS MODEL III

INPUT Stochastic P & Q   

P 53.00

Q 7.80

R 413.40

K 4867.00

P 0.20

Q 0.20

 -0.50

r 0.08

P 0.01

Q 0.01

PQ 0.0000

rPQ 0.0800

 13.6500 SUBSIDY ON Q

 0.1000 POSSIBILITY OF SUBSIDY WITHDRAWAL

F3(P,Q) 1717.11 IF(B5<B28, B23*(B3^B24)*(B4^B25)+B30*(B3^B31)*(B4^B32),B18)

F3(P,Q) 1669.40 B5/B14+(1-B16)*(B15*B4)/(B10-B12)-B6

VM 0.0000 (B26*B27)/B14+(1-B16)*B15*B27/(B10-B12)-B6-B23*(B26^B24)*(B27^B25)-B30*(B26^B31)*(B27^B32)

SP1 0.0000 (B26*B27)/B14-B24*B23*(B26^B24)*(B27^B25)-B31*B30*(B26^B31)*(B27^B32)

SP2 0.0000 (B26*B27)/B14+((1-B16)*B15*B27/(B10-B12))-B25*B23*(B26^B24)*(B27^B25)-B32*B30*(B26^B31)*(B27^B32)

Q 0.0000 0.5*(B7^2)*B24*(B24-1)+0.5*(B8^2)*B25*(B25-1)+B9*B7*B8*B24*B25+B24*B11+B25*B12-(B10+B16)

A3 0.000009  

3 2.50

3 4.00

P^3 59.19

Q^3 7.80

P^ Q^ 461.72

SOLVER 0.0000 SET B29=0, CHANGING B23:B26

A1 0.00  

1 2.56  

1 2.56  

P^ 81.88 M1: No subsidy

Q^ 7.80

P^ Q^ 638.70

SUBSIDY 106.47  

SUBSIDY 106.45
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34

35

A B C

JOINT PRODUCTS MODEL IV0

INPUT Stochastic P & Q   

P 53.00

Q 7.80

R 413.40 R<R2

K 4867.00

P 0.20

Q 0.20

 -0.50

r 0.08

P 0.01

Q 0.01

PQ 0.0000

rPQ 0.0800

 13.6500 SUBSIDY ON Q

 0.1000 POSSIBILITY OF SUDDEN SUBSIDY 

F40(P,Q) 1325.66 IF(B5<B28, B23*(B3^B24)*(B4^B25)+B30*(B3^B31)*(B4^B32),B18)

F41(P,Q) 452.60 (B5/B14)+(B16*B15*B4)/(B10-B12)-B6

VM 0.0000 (B26*B27)/B14+(B16*B15*B27)/(B10-B12)-B6-B23*(B26^B24)*(B27^B25)-B30*(B26^B31)*(B27^B32)

SP1 0.0000 (B26*B27)/B14-B24*B23*(B26^B24)*(B27^B25)-B31*B30*(B26^B31)*(B27^B32)

SP2 0.0000 (B26*B27)/B14+(B16*B15*B27)/(B10-B12)-B25*B23*(B26^B24)*(B27^B25)-B32*B30*(B26^B31)*(B27^B32)

Q 0.0000 0.5*(B7^2)*B24*(B24-1)+0.5*(B8^2)*B25*(B25-1)+B9*B7*B8*B24*B25+B24*B11+B25*B12-(B10+B16)

A40 -0.0000090

40 2.46

40 4.00

P^40 92.18

Q^40 7.80

P^ Q^40 718.97

SOLVER 0.00 SET B29=0, CHANGING B23:B26

A2 0.000911  

2 2.23  

2 2.78  

P^ 62.32  

Q^ 7.80

P2^Q2^ 486.07


